Neuron-astrocyte interaction enhance GABAergic synaptic transmission in a manner dependent on key metabolic enzymes

نویسندگان

  • Przemysław Kaczor
  • Dariusz Rakus
  • Jerzy W. Mozrzymas
چکیده

Gamma aminobutric acid (GABA) is the major inhibitory neurotransmitter in the adult brain and mechanisms of GABAergic inhibition have been intensely investigated in the past decades. Recent studies provided evidence for an important role of astrocytes in shaping GABAergic currents. One of the most obvious, but yet poorly understood, mechanisms of the cross-talk between GABAergic currents and astrocytes is metabolism including neurotransmitter homeostasis. In particular, how modulation of GABAergic currents by astrocytes depends on key enzymes involved in cellular metabolism remains largely unknown. To address this issue, we have considered two simple models of neuronal culture (NC): nominally astrocyte-free NC and neuronal-astrocytic co-cultures (ANCC). Miniature Inhibitory Postsynaptic Currents (mIPSCs) were recorded in control conditions and in the presence of different enzyme blockers. We report that enrichment of NC with astrocytes results in a marked increase in mIPSC frequency. This enhancement of GABAergic activity was accompanied by increased number of GAD65 and vGAT puncta, indicating that at least a part of the frequency enhancement was due to increased number of synaptic contacts. Inhibition of glutamine synthetase (Glns) (with MSO) strongly reduced mIPSC frequency in ANCC but had no effect in NC. Moreover, treatment of ANCC with inhibitor of glycogen phosphorylase (Gys) (BAYU6751) or with selective inhibitor of astrocytic Krebs cycle, fluoroacetate, resulted in a marked reduction of mIPSC frequency in ANCC having no effect in NC. We conclude that GABAergic synaptic transmission strongly depends on neuron-astrocyte interaction in a manner dependent on key metabolic enzymes as well as on the Krebs cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GABAergic system for Ptychodiscus brevis toxin-induced depression of synaptic transmission elicited in isolated spinal cord from neonatal rats

The involvement of inhibitory transmitters for Ptychodiscus brevis toxin (PbTx)-induced depression of spinal synaptic transmission in neonatal rats was investigated. Stimulation of a dorsal root evoked monosynaptic reflex (MSR) and polysynaptic reflex (PSR) potentials in the segmental ventral root. The PbTx depressed the reflexes in a concentration-dependent manner and this depression was block...

متن کامل

GABAergic system for Ptychodiscus brevis toxin-induced depression of synaptic transmission elicited in isolated spinal cord from neonatal rats

The involvement of inhibitory transmitters for Ptychodiscus brevis toxin (PbTx)-induced depression of spinal synaptic transmission in neonatal rats was investigated. Stimulation of a dorsal root evoked monosynaptic reflex (MSR) and polysynaptic reflex (PSR) potentials in the segmental ventral root. The PbTx depressed the reflexes in a concentration-dependent manner and this depression was block...

متن کامل

Acidosis-Induced Dysfunction of Cortical GABAergic Neurons through Astrocyte-Related Excitotoxicity

BACKGROUND Acidosis impairs cognitions and behaviors presumably by acidification-induced changes in neuronal metabolism. Cortical GABAergic neurons are vulnerable to pathological factors and their injury leads to brain dysfunction. How acidosis induces GABAergic neuron injury remains elusive. As the glia cells and neurons interact each other, we intend to examine the role of the astrocytes in a...

متن کامل

Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks

Interneurons are critical for proper neural network function and can activate Ca2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneur...

متن کامل

Biophysically based computational models of astrocyte ~ neuron coupling and their functional significance

Neuroscientists are becoming increasingly interested in modeling brain functions however, capturing underlying biophysical mechanisms requires plausible, biologically realistic models at the cellular level. Moreover, the (often conflicting) demands of biological realism and computational tractability have to be accommodated. Recent publications highlight the interaction of astrocytes with multi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015